Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics

نویسندگان

  • Luca Faes
  • A. Porta
  • Giandomenico Nollo
چکیده

In the framework of information dynamics, the temporal evolution of coupled systems can be studied by decomposing the predictive information about an assigned target system into amounts quantifying the information stored inside the system and the information transferred to it. While information storage and transfer are computed through the known self-entropy (SE) and transfer entropy (TE), an alternative decomposition evidences the so-called cross entropy (CE) and conditional SE (cSE), quantifying the cross information and internal information of the target system, respectively. This study presents a thorough evaluation of SE, TE, CE and cSE as quantities related to the causal statistical structure of coupled dynamic processes. First, we investigate the theoretical properties of these measures, providing the conditions for their existence and assessing the meaning of the information theoretic quantity that each of them reflects. Then, we present an approach for the exact computation of information dynamics based on the linear Gaussian approximation, and exploit this approach to characterize the behavior of SE, TE, CE and cSE in benchmark systems with known dynamics. Finally, we exploit these measures to study cardiorespiratory dynamics measured from healthy subjects during head-up tilt and paced breathing protocols. Our main result is that the combined evaluation of the measures of information dynamics allows to infer the causal effects associated with the observed OPEN ACCESS Entropy 2015, 17 278 dynamics and to interpret the alteration of these effects with changing experimental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Classification of Bivariate Distributions Based on Mutual Information

Among all measures of independence between random variables, mutual information is the only one that is based on information theory. Mutual information takes into account of all kinds of dependencies between variables, i.e., both the linear and non-linear dependencies. In this paper we have classified some well-known bivariate distributions into two classes of distributions based on their mutua...

متن کامل

Information Landscape and Flux, Mutual Information Rate Decomposition and Entropy Production

We explore the dynamics of information systems. We show that the driving force for 1 information dynamics is determined by both the information landscape and information flux which 2 determines the equilibrium time reversible and the nonequilibrium time-irreversible behaviours 3 of the system respectively. We further demonstrate that the mutual information rate between the 4 two subsystems can ...

متن کامل

Application of the linear Differential Equations on the Plane and Elements of Nonlinear Systems, In Economics

In recent years, it has become increasingly important to incorporate explicit dynamics in economic analysis. These two tools that mathematicians have developed, differential equations and optimal control theory, are probably the most basic for economists to analyze dynamic problems. In this paper I will consider the linear differential equations on the plane (phase diagram) and elements of nonl...

متن کامل

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production

We explored the dynamics of two interacting information systems. We show that for the Markovian marginal systems, the driving force for information dynamics is determined by both the information landscape and information flux. While the information landscape can be used to construct the driving force to describe the equilibrium time-reversible information system dynamics, the information flux c...

متن کامل

Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems

Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015